\(\int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx\) [317]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [B] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [B] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 87 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {(A+3 B) \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}} \]

[Out]

-1/2*(A-B)*cos(f*x+e)/f/(a+a*sin(f*x+e))^(3/2)-1/4*(A+3*B)*arctanh(1/2*cos(f*x+e)*a^(1/2)*2^(1/2)/(a+a*sin(f*x
+e))^(1/2))/a^(3/2)/f*2^(1/2)

Rubi [A] (verified)

Time = 0.06 (sec) , antiderivative size = 87, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {2829, 2728, 212} \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=-\frac {(A+3 B) \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a \sin (e+f x)+a}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) \cos (e+f x)}{2 f (a \sin (e+f x)+a)^{3/2}} \]

[In]

Int[(A + B*Sin[e + f*x])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

-1/2*((A + 3*B)*ArcTanh[(Sqrt[a]*Cos[e + f*x])/(Sqrt[2]*Sqrt[a + a*Sin[e + f*x]])])/(Sqrt[2]*a^(3/2)*f) - ((A
- B)*Cos[e + f*x])/(2*f*(a + a*Sin[e + f*x])^(3/2))

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2728

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, b*(C
os[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2829

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*
c - a*d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/(a*f*(2*m + 1))), x] + Dist[(a*d*m + b*c*(m + 1))/(a*b*(2*m + 1)
), Int[(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 -
b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps \begin{align*} \text {integral}& = -\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}+\frac {(A+3 B) \int \frac {1}{\sqrt {a+a \sin (e+f x)}} \, dx}{4 a} \\ & = -\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}}-\frac {(A+3 B) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\frac {a \cos (e+f x)}{\sqrt {a+a \sin (e+f x)}}\right )}{2 a f} \\ & = -\frac {(A+3 B) \text {arctanh}\left (\frac {\sqrt {a} \cos (e+f x)}{\sqrt {2} \sqrt {a+a \sin (e+f x)}}\right )}{2 \sqrt {2} a^{3/2} f}-\frac {(A-B) \cos (e+f x)}{2 f (a+a \sin (e+f x))^{3/2}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 0.32 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.72 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) \left (2 (A-B) \sin \left (\frac {1}{2} (e+f x)\right )+(-A+B) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )+(1+i) (-1)^{3/4} (A+3 B) \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (e+f x)\right )\right )\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2\right )}{2 f (a (1+\sin (e+f x)))^{3/2}} \]

[In]

Integrate[(A + B*Sin[e + f*x])/(a + a*Sin[e + f*x])^(3/2),x]

[Out]

((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(2*(A - B)*Sin[(e + f*x)/2] + (-A + B)*(Cos[(e + f*x)/2] + Sin[(e + f*x
)/2]) + (1 + I)*(-1)^(3/4)*(A + 3*B)*ArcTanh[(1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(e + f*x)/4])]*(Cos[(e + f*x)/2]
 + Sin[(e + f*x)/2])^2))/(2*f*(a*(1 + Sin[e + f*x]))^(3/2))

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(175\) vs. \(2(72)=144\).

Time = 1.46 (sec) , antiderivative size = 176, normalized size of antiderivative = 2.02

method result size
default \(-\frac {\left (\sin \left (f x +e \right ) \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) \sqrt {2}\, a \left (A +3 B \right )+A \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a +3 B \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a +2 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, A -2 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\, B \right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(176\)
parts \(-\frac {A \left (\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2} \sin \left (f x +e \right )+2 \sqrt {a -a \sin \left (f x +e \right )}\, a^{\frac {3}{2}}+\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a^{2}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {7}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}+\frac {B \left (-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a \sin \left (f x +e \right )-3 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {2}}{2 \sqrt {a}}\right ) a +2 \sqrt {a -a \sin \left (f x +e \right )}\, \sqrt {a}\right ) \sqrt {-a \left (\sin \left (f x +e \right )-1\right )}}{4 a^{\frac {5}{2}} \cos \left (f x +e \right ) \sqrt {a +a \sin \left (f x +e \right )}\, f}\) \(250\)

[In]

int((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/4/a^(5/2)*(sin(f*x+e)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)*a*(A+3*B)+A*2^(1/2)*arcta
nh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2))*a+3*B*2^(1/2)*arctanh(1/2*(a-a*sin(f*x+e))^(1/2)*2^(1/2)/a^(1/2
))*a+2*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*A-2*(a-a*sin(f*x+e))^(1/2)*a^(1/2)*B)*(-a*(sin(f*x+e)-1))^(1/2)/cos(f*x+
e)/(a+a*sin(f*x+e))^(1/2)/f

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 293 vs. \(2 (72) = 144\).

Time = 0.27 (sec) , antiderivative size = 293, normalized size of antiderivative = 3.37 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {\sqrt {2} {\left ({\left (A + 3 \, B\right )} \cos \left (f x + e\right )^{2} - {\left (A + 3 \, B\right )} \cos \left (f x + e\right ) - {\left ({\left (A + 3 \, B\right )} \cos \left (f x + e\right ) + 2 \, A + 6 \, B\right )} \sin \left (f x + e\right ) - 2 \, A - 6 \, B\right )} \sqrt {a} \log \left (-\frac {a \cos \left (f x + e\right )^{2} - 2 \, \sqrt {2} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {a} {\left (\cos \left (f x + e\right ) - \sin \left (f x + e\right ) + 1\right )} + 3 \, a \cos \left (f x + e\right ) - {\left (a \cos \left (f x + e\right ) - 2 \, a\right )} \sin \left (f x + e\right ) + 2 \, a}{\cos \left (f x + e\right )^{2} - {\left (\cos \left (f x + e\right ) + 2\right )} \sin \left (f x + e\right ) - \cos \left (f x + e\right ) - 2}\right ) + 4 \, {\left ({\left (A - B\right )} \cos \left (f x + e\right ) - {\left (A - B\right )} \sin \left (f x + e\right ) + A - B\right )} \sqrt {a \sin \left (f x + e\right ) + a}}{8 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

1/8*(sqrt(2)*((A + 3*B)*cos(f*x + e)^2 - (A + 3*B)*cos(f*x + e) - ((A + 3*B)*cos(f*x + e) + 2*A + 6*B)*sin(f*x
 + e) - 2*A - 6*B)*sqrt(a)*log(-(a*cos(f*x + e)^2 - 2*sqrt(2)*sqrt(a*sin(f*x + e) + a)*sqrt(a)*(cos(f*x + e) -
 sin(f*x + e) + 1) + 3*a*cos(f*x + e) - (a*cos(f*x + e) - 2*a)*sin(f*x + e) + 2*a)/(cos(f*x + e)^2 - (cos(f*x
+ e) + 2)*sin(f*x + e) - cos(f*x + e) - 2)) + 4*((A - B)*cos(f*x + e) - (A - B)*sin(f*x + e) + A - B)*sqrt(a*s
in(f*x + e) + a))/(a^2*f*cos(f*x + e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f - (a^2*f*cos(f*x + e) + 2*a^2*f)*sin(f*
x + e))

Sympy [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {A + B \sin {\left (e + f x \right )}}{\left (a \left (\sin {\left (e + f x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))**(3/2),x)

[Out]

Integral((A + B*sin(e + f*x))/(a*(sin(e + f*x) + 1))**(3/2), x)

Maxima [F]

\[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\int { \frac {B \sin \left (f x + e\right ) + A}{{\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)/(a*sin(f*x + e) + a)^(3/2), x)

Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 184 vs. \(2 (72) = 144\).

Time = 0.31 (sec) , antiderivative size = 184, normalized size of antiderivative = 2.11 \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\frac {\frac {\sqrt {2} {\left (A \sqrt {a} + 3 \, B \sqrt {a}\right )} \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {\sqrt {2} {\left (A \sqrt {a} + 3 \, B \sqrt {a}\right )} \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}{a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )} - \frac {2 \, \sqrt {2} {\left (A \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right ) - B \sqrt {a} \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{{\left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - 1\right )} a^{2} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, f x + \frac {1}{2} \, e\right )\right )}}{8 \, f} \]

[In]

integrate((A+B*sin(f*x+e))/(a+a*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

1/8*(sqrt(2)*(A*sqrt(a) + 3*B*sqrt(a))*log(sin(-1/4*pi + 1/2*f*x + 1/2*e) + 1)/(a^2*sgn(cos(-1/4*pi + 1/2*f*x
+ 1/2*e))) - sqrt(2)*(A*sqrt(a) + 3*B*sqrt(a))*log(-sin(-1/4*pi + 1/2*f*x + 1/2*e) + 1)/(a^2*sgn(cos(-1/4*pi +
 1/2*f*x + 1/2*e))) - 2*sqrt(2)*(A*sqrt(a)*sin(-1/4*pi + 1/2*f*x + 1/2*e) - B*sqrt(a)*sin(-1/4*pi + 1/2*f*x +
1/2*e))/((sin(-1/4*pi + 1/2*f*x + 1/2*e)^2 - 1)*a^2*sgn(cos(-1/4*pi + 1/2*f*x + 1/2*e))))/f

Mupad [F(-1)]

Timed out. \[ \int \frac {A+B \sin (e+f x)}{(a+a \sin (e+f x))^{3/2}} \, dx=\int \frac {A+B\,\sin \left (e+f\,x\right )}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int((A + B*sin(e + f*x))/(a + a*sin(e + f*x))^(3/2),x)

[Out]

int((A + B*sin(e + f*x))/(a + a*sin(e + f*x))^(3/2), x)